Week 9 - Friday

COMP 4290

Last time

- Network basics
- Network threats

Questions?

Project 2

Austin Rheyne Presents

Reconnaissance

Reconnaissance

- A smart attacker learns everything he or she can about the system before attacking it
- Useful methods for reconnaissance of a network include:
 - Port scans
 - Social engineering
 - Dumpster diving
 - OS and application fingerprinting
 - Background research

Port scan

- Many targeted systems include servers that are always listening on various ports, waiting for communication
- A port scanner is a program that tries to connect on many interesting ports to see what kinds of communication is ready to do
- If a server is poorly configured, it might be listening on ports even the administrators don't know about
- Common free port scanners:
 - nmap
 - netcat

Social engineering

- Social engineering means techniques used to get a human being to unknowingly divulge information to an outsider
- Often this is done by posing as tech support or some kind of contractor
- Attackers can pretend to be someone from another department
- Most employees have been trained to be reluctant to give up their passwords
 - However, they will often reveal their IP address, OS information, and other useful pieces of system information

Gathering more intelligence

- Port scans and social engineering can tell a lot
- Dumpster diving or going through trash can tell a lot as well
 - Which pieces of hardware have been bought, by their packaging
 - Phone lists or organization charts could be in the trash
 - Diagrams, notes, even passwords could be written on scraps of paper
 - Old hard drives with sensitive information could turn up
- For high-level attacks, real spying is possible

OS and application fingerprinting

- Port scanning gives a lot of information
 - For example, port 443 is used for HTTPS
- But you may want to know which OS or application is actually listening at a port
 - Vulnerabilities are often system-dependent
- Some applications will reveal themselves directly
- Others will give more information if you ask for a feature that is unavailable or give a bad command
- You are being fingerprinted when you visit websites
 - Your browser identifies which browser it is
 - You can hide this information, but your web pages might look weird

Documentation and hacking tips

- How do you actually do the attack?
- Same as everything else:
 - Google
- Once you know the system you are attacking, you can search the Internet and security blogs and boards for vulnerabilities
- Because networking is often between different kinds of systems running different kinds of software, features are welldocumented
 - Most big viruses and worms use publicly known vulnerabilities that haven't been patched

Eavesdropping

Eavesdropping and wiretapping

- Eavesdropping means overhearing private information without much effort
 - Administrators periodically need to monitor network traffic
- Wiretapping implies that more effort is being used to overhear information
 - Passive wiretapping is only listening to information
 - Active wiretapping means that you may adding or changing information in the stream

Cable wiretapping

- If you are on the same LAN, you can use a packet sniffer to analyze packets
 - Packets are constantly streaming by, and your computer usually only picks up those destined for it
 - Passwords are often sent in the clear
 - Wireshark is a free, popular packet sniffer
- Cable modems are filters that give you only the data you need
 - Sophisticated attackers can tap into a cable network
 - Data is supposed to be encrypted, but many networks don't turn encryption on
- Inductance is a property that can allow you to measure the signals inside of a wire without a direct physical connection
- Using inductance or physically connecting to a wire changes its impedance, which can be (but usually is not) measured
- Signals are often multiplexed, sharing media with other signals, which can increase the sophistication needed to wiretap

Wireless eavesdropping

- Wireless networks are easy to disrupt, but attackers usually have little to gain by this
- Since they are broadcast, it is not difficult to intercept the signal
 - Special antennas can receive the signal from a longer distance than usual
- Some networks are entirely unencrypted
- WEP is almost completely broken
- WPA and WPA2 have vulnerabilities that can be exploited in some cases

Other media

- Microwave is easy to intercept
 - Long distance phone can use microwaves
 - Cell phones towers can use microwaves
- One difficulty with making use of the intercepted signal is that microwave signals are heavily multiplexed, making it hard to untangle individual signals
- Satellites are similar (unsecure but heavily multiplexed)
- Optical fiber is very difficult to tap
 - Cutting a single fiber means recalibrating the network
 - Repeaters and taps that connect the fiber are the best places to attack

Impersonation

- Rather than wiretapping, attackers will more often try to impersonate a legitimate user
- Different approaches:
 - Guess the identity and authentication information
 - Use other communications or wiretapping to gain such information
 - Circumvent the authentication mechanism
 - Use a target that will not be authenticated
 - Use a target with known authentication data

Authentication issues

- Passwords are often easy to guess
 - Because we're bad at picking passwords
 - Because the user may not have realized that the machine would be exposed to network attacks
- Passwords are sent in the clear
- Bad hashes can give information about the password
- Sometimes buffer overflows can crash the authentication system
- Sometimes authentication is not needed
 - .rhosts and .rlogin files in Unix
 - Guest accounts
- Default passwords on routers and other devices that never get changed

Authentication attacks

- Spoofing is when an attacker carries out one end of a networked exchange
- A masquerade is spoofing where a host pretends to be another host
 - URL confusion: someone types hotmale.com (don't go there!) or gogle.com
- Phishing is a form of masquerading
- Session hijacking (or sidejacking) is carrying on a session started by someone else
 - Login is encrypted, the rest of the data isn't always (though it increasingly is, through HTTPS)
 - Firesheep was a browser plugin that allowed you to log on to other people's Facebook and Twitter accounts in, say, the same coffeeshop (but it no longer works)
- Man-in-the-middle attacks

Confidentiality threats

- Misdelivery
 - Data can have bad addresses, occasionally because of computer error
 - Human error (e.g. James Hughes (student) instead of James Hughes (professor)) is more common)
- Exposure of data can happen because of wiretapping or unsecure systems anywhere along the network
- Traffic flow analysis
 - Data might be encrypted
 - Even so, it is very hard to hide where the data is going to and where it is coming from
 - Tor and other anonymization networks try to fix this

Integrity threats

- Attackers can falsify some or all of a message, using attacks we've talked about
 - Parts of messages can be combined
 - Messages can be redirected or deleted
 - Old messages can also be replayed
- Noise can degrade the signals
 - All modern network protocols have error correction built in
- Malformed packets can crash systems
- Protocols often have vulnerabilities

Wireless Network Security

WiFi technology

- WiFi signals are radio signals that anyone in range can pick up
- WiFi is built on a set of protocols defined by the 802.11 standards
 - Most of these protocols communicate in the 2.4 and 5 GHz ranges
 - Older protocols can reach about 300 feet and 802.11n may be able to reach 5,000 feet
- A wireless access point communicates with a network interface card (NIC)
- MAC addresses are used to identify physical devices

Mechanics

- Management frames are data exchanged by access points and routers to structure communication
 - Beacon frames announce the presence of an access point
 - Authentication frames allow NICs to request access to an access point
 - Association frames allow NICs and access points to agree on how to communicate
- The Service Set Identifier (SSID) is a string that identifies an access point

WiFi vulnerabilities

- SSIDs do not need to be broadcast
 - However, when someone joins the access point, the SSID is revealed
- Access points associate a computer with a MAC address
 - But MAC addresses can be spoofed!

WEP

- The original system for encrypting wireless communication was Wired Equivalent Privacy (WEP)
 - WEP is not secure!
- WEP keys are effectively either 40 bits (breakable!) or 104 bits
- Static keys are used
- A flaw in the RC4 algorithm allows even 104-bit keys to be broken in minutes
- WEP does no authentication

WPA

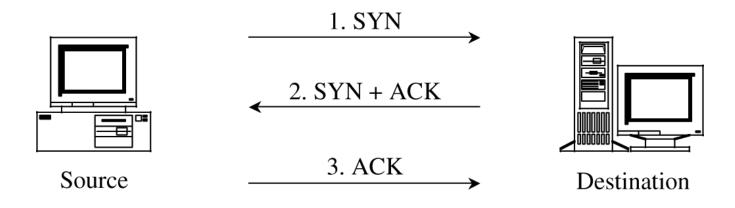
- WiFi Protected Access (WPA, WPA2, and WPA3) was created to replace WEP
- WPA uses a different key to encrypt each packet
- Authentication for WPA is better (although still uses a shared secret for home use)
- WPA has a better integrity check than WEP
- WPA2 adds AES for encryption, much stronger than RC4
- WPA3 was supposed to make it harder to collect information and brute force the key
- Although each version improves on earlier weaknesses, there are attacks on WPA, WPA2, and WPA3 that can make it possible to intercept wireless traffic

Weaknesses of WPA

- Man-in-the-middle attack is still possible
 - The attacker convinces the access point that he's the user and convinces the user that he's the access point
 - Requires spoofing MAC addresses
- Brute force attacks
 - WPA allows users to select passphrases
 - Users often select poor passphrases
 - Some practical attacks against integrity exist in WPA (but not WPA2)

Denial of Service

Denial of service

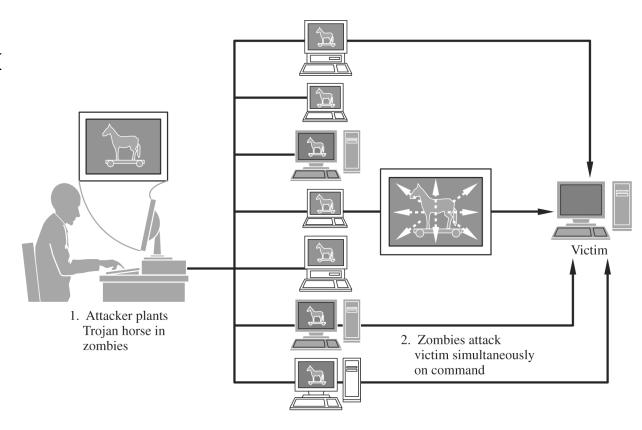

- Networks are one of the best places to launch an attack on availability
- In this setting, these are usually called denial of service (DoS) attacks
- DoS attacks are very hard to avoid

Ways to make DoS happen

- Flooding overloads capacity
 - Ask for too many connections
 - Request too many of some other service
- Blocking access
 - Crash an application
 - Interfere with network routing protocols
- Access failure
 - Hardware or software fails

SYN flood

- TCP is built on a three-way handshake
 - Client requests a connection by sending a SYN packet
 - The server acknowledges the request by sending a SYN-ACK packet back
 - The client responds with an ACK, establishing the connection
- An attacker can just keep sending SYN packets
- The server will allocate some resources, wait for the ACK, and never get it
- A clever attacker will spoof at least his own IP so that the SYN-ACK is sent elsewhere
- A more sophisticated attacker will spoof many different IP addresses (or have many bots in a botnet) sending all these SYN's



Other denial of service attacks

- Echo-chargen
 - Chargen sets up a stream of packets for testing
 - Echo packets are supposed to be sent back to the sender
 - If you can trick a server into sending echo packets to itself, it will respond to its own packets forever
- Ping of death
 - A ping packet requests a reply
 - If you can send more pings than a server can handle, it goes down
 - Only works if the attacker has more bandwidth than the victim (DDoS helps)
- Smurf
 - A ping packet is broadcast to everyone, with the victim spoofed as the originator
 - All the hosts try to ping the victim
 - The real attacker is hidden
- Teardrop
 - A teardrop attack uses badly formed IP datagrams
 - They claim to correspond to overlapping sequences of bytes in a packet
 - There's no way to put them back together and the system can crash

Distributed denial of service

- Distributed denial of service (DDoS) attacks use many machines to perform a DoS attack
- Usually, many targets have been compromised with a Trojan horse making them zombies or bots
- These zombie machines are controlled by the attacker, performing flooding or other attacks on a victim
 - A network of zombies is called a botnet
- The attacker is hard to trace

Stopping DDoS attacks

- The best defense is prevention
 - DDoS attacks are usually mounted by bots that were compromised by known vulnerabilities
 - Patch your stuff!
- Defense against DoS attacks:
 - Tuning: adjusting the number of active servers
 - Load balancing: redirecting traffic to servers that aren't getting used
 - Shunning: reducing service given to certain IP addresses
 - Blacklisting: ignoring traffic from known bad IP addresses

DNS attacks

- The Domain Name System (DNS) uses Domain Name Servers (also DNS) to convert user readable URLs like google.com to IP addresses
- Taking control of a server means that you get to say where google.com is
 - Called DNS spoofing
- For efficiency, servers cache results from other servers if they didn't know the IP
 - DNS cache poisoning is when an attacker gives a good server a bad IP address

Summary of vulnerabilities

Target	Vulnerability	Target	Vulnerability
Precursors to attack	 Port scan Social engineering Reconnaissance OS and application fingerprinting 	Confidentiality	 Protocol flaw Eavesdropping Passive wiretap Misdelivery Exposure Traffic flow analysis
Authentication failures	 Impersonation Guessing Eavesdropping Spoofing Session hijacking Man in the middle attack 	Integrity	 Protocol flaw Active wiretap Impersonation Falsification Noise Web site defacement DNS attack
Programming flaws	 Buffer overflow Addressing errors Server-side include Malicious Java or ActiveX Worms, viruses, Trojan horses 	Availability	 Protocol flaw Transmission failure Flooding DNS attack Traffic redirection DDoS

Ticket out the Door

Upcoming

Next time...

- Network controls
- Colm Oneacre presents

Reminders

- Keep reading Sections 6.6 through 6.9
- Finish Project 2
 - Due tonight!